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Abstract. We make a conjecture that the number of isolated local minimum points of a 2n-degree or
(2n+1)-degree r-variable polynomial is not greater than nr when n � 2. We show that this conjecture
is the minimal estimate, and is true in several cases. In particular, we show that a cubic polynomial
of r variables may have at most one local minimum point though it may have 2r critical points.
We then study the global minimization problem of an even-degree multivariate polynomial whose
leading order coefficient tensor is positive definite. We call such a multivariate polynomial a normal
multivariate polynomial. By giving a one-variable polynomial majored below a normal multivariate
polynomial, we show the existence of a global minimum of a normal multivariate polynomial, and
give an upper bound of the norm of the global minimum and a lower bound of the global minimization
value. We show that the quartic multivariate polynomial arising from broad-band antenna array signal
processing, is a normal polynomial, and give a computable upper bound of the norm of the global
minimum and a computable lower bound of the global minimization value of this normal quartic
multivariate polynomial. We give some sufficient and necessary conditions for an even order tensor
to be positive definite. Several challenging questions remain open.
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1. Introduction

The global equality constrained quadratic minimization problem arises from broad-
band antenna array signal processing. The problem has a positive definite quad-
ratic objective function, a large number of variables, a large number of linear
equality constraints, and a few quadratic equality constraints each having very
low rank quadratic constraint matrices [1, 3, 10, 11]. In [11], Thng, Cantoni and
Leung proposed a Quadratic Constraint Structure (QCS) algorithm to solve this
problem. They converted this problem into a quartic minimization problem either
unconstrained as

f ∗ := min f (x) (1)
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or constrained as

f ∗∗ := min f (x)

subject to h(x) = 0, (2)

where x ∈ �r , f : �r → � is a quartic polynomial of x, h : �r → �p is
a system of linear or quadratic polynomials. According to the assumptions and
(P3)-A, (P3)-B of [11], the quartic polynomial f can be written as

f (x) = g(x)T Gg(x) + cT g(x) (3)

by dropping the constant term, where g : �r → �m is a set of linear or quadratic
polynomials, G is an m × m symmetric positive definite matrix, and m > r. The
dimension r is very low. In a 5-tuple example of [11], r = 1. In a 70-tuple example
of [11], r = 2. Here, 5 and 70 are the dimensions of the original linear and
quadratically constrained quadratic minimization problem considered in [11]. In
[11], the quartic minimization problem is converted into a system of cubic polyno-
mial equations, by writing out the optimality condition of the quartic minimization
problem. For (1), this system of cubic polynomial equations is as follows.

∇f (x) ≡ 2g(x)T G∇g(x) + cT ∇g(x) = 0. (4)

For (2), this system of cubic polynomial equations is as follows.

∇f (x) +
p∑

i=1

ui∇hi(x) = 0,

h(x) = 0.

(5)

Then, the U -Resultant algorithm [8] is used to solve the system (4) or (5). The
system (5) has r equations of r + p variables, and p equations of r variables. We
may treat (4) as a special case of (5) with p = 0. According to the Bézout theorem
[12], the system (5) have at most 2p × 3r zeros. Comparing the values of f at all
the real zeros of the cubic polynomial system, the global minimum of (1) or (2) is
found.

Motivated by the above practical problem from signal processing, in this paper,
we study two issues of multivariate polynomial optimization.

The first issue is the number of local minimum points of a multivariate poly-
nomial. This issue was studied by Durfee, Kronenfeld, Munson, Roy and Westby
[2] for r = 2 in 1993. They pointed out that this issue is related to Hilbert’s 16th
problem on the arrangements of ovals of real algebraic curves. Since then, to the
best of our knowledge, no further results appear in the literature. This shows that
this is a tough issue.

We make a conjecture that the number of isolated local minimum points of a
2n-degree or (2n + 1)-degree r-variable polynomial is not greater than nr when
n � 2. We show that this conjecture is the minimal estimate, and is true in several
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cases. In particular, we show that a cubic polynomial of r variables may have at
most one local minimum point though it may have 2r critical points.

We then study the global minimization problem of an even-degree multivariate
polynomial whose leading order coefficient tensor is positive definite. We call such
a multivariate polynomial a normal multivariate polynomial. We show that f

defined by (3) is a normal multivariate quartic polynomial. By tensor analysis, we
give a one-variable polynomial majored below a normal multivariate polynomial.
With the help of such a majored below one-variable polynomial, we show the
existence of a global minimum of the normal multivariate polynomial, and give
an upper bound of the norm of the global minimum and a lower bound of the
global minimization value. In the case of f defined by (3), we give a computable
upper bound of the norm of the global minimum and a computable lower bound of
the global minimization value. We give some sufficient and necessary conditions
for an even order tensor to be positive definite.

Several challenging questions are presented in the final concluding section.

2. The Number of Local Minima of a Multivariate Polynomial

Our conjecture is below.

CONJECTURE 1. A 2n-degree or 2n+ 1-degree polynomial of r variables has at
most nr isolated local minima when n � 2.

Clearly, this conjecture is true for r = 1. This conjecture is also true when f is
separable, i.e.,

f (x) =
r∑

i=1

fi(xi),

where fi is a polynomial of xi , and the degree of fi is not higher than 2n+1. Then
fi has at most n local minima. Since the xi component of a local minimum of f

must be a local minimum of fi , the conjecture is true in this case. It also shows
that this conjecture is the minimal estimate of this number, as we can construct a
2n-degree 2n+1-degree separable polynomial of r variables, which has nr isolated
local minima. This conjecture is also true for a quadratic polynomial, since it has
at most one isolated critical point. We now show that this conjecture is true for
a cubic multivariate polynomial, i.e., a cubic multivariate polynomial has at most
one isolated local minimum. This is nontrivial as a cubic multivariate polynomial
may have 2r isolated critical points.

Let the degree of f be N , where N = 2n or 2n + 1.

THEOREM 1.
(i) A 2n-degree or 2n+1-degree polynomial of r variables has at most n isolated

local minima in a line.
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(ii) A cubic polynomial of r variables may have 2r critical points. However, it has
at most and may have one local minimum and one local maximum.

Proof.
(i) Let f be a 2n-degree or 2n + 1-degree polynomial of r variables. In a line

a + th, where a, h ∈ �r , t ∈ �, define

φ(t) = f (a + th).

Then an isolated local minimum of f in this line is an isolated local minimum
of φ. Since φ has at most n isolated local minima, the claim (i) holds.

(ii) By (i), A cubic polynomial f of r variables has at most one local minimum
in a line. This shows that it has at most one local minimum in the whole
space. Consider −f . Then it has at most one local maximum. By the Bézout
Theorem, it has at most 2r critical points.
The following example shows that 2r critical points are achievable. Let f be
defined by

f (x) =
r∑

i=1

x3
i − 3xi.

Clearly, f has 2r critical points

x = (x1, · · ·, xr )
T ,

where xi = 1 or −1. However, f has only one local minimum

x = (1, · · ·, 1)T ,

and one local maximum

x = (−1, · · ·,−1)T . �
We have proved the conjecture is true for the following three cases:
(a). N � 3;
(b). r = 1;
(c). f is separable.
In 1993, Durfee, Kronenfeld, Munson, Roy and Westby [2] studied the case

when r = 2. They prove that

Nmax + Nmin � 1

2
N2 − N + 1,

where Nmax is the number of local maxima, Nmin is the number of local minima,
N is the degree of the polynomial. When N = 4, their bound is 5. This is actually
the true upper bound, i.e., a two variable quartic polynomial has at most 5 local
maxima and local minima. An example is f defined by

f (x) = x4
1 + x4

2 − 2x2
1 − 2x2

2 .
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They also made a conjecture that if N = 2n is even,

Nmax � 3

2
n(n − 1) + 1.

If we take N = 4, i.e., n = 2, we have

Nmax � 4.

If we multiply the polynomial by −1, this implies that

Nmin � 4.

This is the same as our conjecture.
An interesting open question is: Can we prove that a quartic two variable poly-

nomial has at most 4 local minima, or construct a quartic two variable polynomial
having 5 local minima?

Durfee, Kronenfeld, Munson, Roy and Westby [2] also pointed out that this
issue is related to Hilbert’s 16th problem on the arrangements of ovals of real
algebraic curves. By [�], conjecture 1 is not valid when n � 3.

3. Tensor Analysis

We use A(n) to denote an nth order tensor and use A
(n)
i1···in to denote its elements. We

assume ik = 1, · · ·, r for k = 1, · · ·, n. We assume that A(n) is totally symmetric,
i.e.,

A
(n)
i1···in = A

(n)
j1···jn

if {i1, · · ·, in} is any reordering of {j1, · · ·, jn}. Let x ∈ �r . Define

A(n)xn :=
r∑

i1,···,in
A

(n)
i1···inxi1 · · · xin .

Let ‖ · ‖ be a norm in �r . Define the induced norm of A(n) as

‖A(n)‖ := max{|A(n)xn| : ‖x‖ = 1}. (6)

Then the norm of an nth order totally symmetric tensor is well-defined. When
n = 1, it is the dual vector norm of the norm ‖ · ‖. When n = 2 and ‖ · ‖ is the
2-norm, it reduces to the usual symmetric matrix norm and ‖A(2)‖ is the largest
absolute value of the eigenvalue of the symmetric matrix A(2). For any α ∈ �, we
have

‖A(n)(αx)n‖ = |α|n‖A(n)xn‖. (7)
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We say that an even-order tensor A(2n) is positive semidefinite if

A(2n)x2n � 0

for all x ∈ �r . We say that an even-order tensor A(2n) is positive definite if

A(2n)x2n > 0

for all x �= 0, x ∈ �r . For n = 1, these two definitions are the same as the
definitions of positive semidefinite and positive definite symmetric matrices. For
an even-order tensor A(2n), we define

[A(2n)] := min{A(2n)x2n : ‖x‖ = 1}. (8)

Clearly, A(2n) is positive semidefinite if and only if [A(2n)] � 0, is positive definite
if and only if [A(2n)] > 0. When ‖·‖ is the 2-norm, [A(2)] is the smallest eigenvalue
of the symmetric matrix A(2).

Since ‖A(2)‖ and [A(2)] are the largest absolute value of the eigenvalue, and
the smallest eigenvalue of the symmetric matrix A(2) respectively when ‖ · ‖ is
the 2-norm, there are various computational methods to calculate them. A natural
question is: whether similar facts exist for ‖A(n)‖, n � 3 and [A(2n)], n � 2?

If there are m nth order tensors B
(n)
1 , · · ·, B(n)

m such that for all x ∈ �r ,

A(2n)x2n =
m∑

i=1

(
B

(n)
i xn

)2
, (9)

then A(2n) is positive semidefinite. If furthermore the family {B(n)
1 , · · ·, B(n)

m } is
regular in the sense that if x �= 0 then at least one of B

(n)
1 xn, · · ·, B(n)

m xn is non-
zero, then A(2n) is positive definite. On the other hand, if n = 1 and A(2n) is positive
definite, we know that there are m = r vectors B

(1)
1 , · · ·, B(1)

m such that they form
a regular family and (9) holds. Later, we will see that this is true when n = 2, A(4)

is the leading coefficient tensor of the quartic polynomial f defined by (3), and g

in (3) satisfies a regularity condition. For a general even-order tensor A(2n), are the
following two statements true? (i). A(2n) is positive semidefinite if and only if there
are m nth order tensors B

(n)
1 , · · ·, B(n)

m such that (9) holds; and (ii). A(2n) is positive
definite if and only if there are m nth order tensors B

(n)
1 , · · ·, B(n)

m such that they
form a regular family and (9) holds. Hilbert has investigated the first question [9].
He showed that the answer is fully positive only for the following cases [9]:

(a). n = 1;
(b). r = 2;
(c). n = 2, r = 3.
In the next section, we discuss more on positive definite even-order tensors.

Here we give a proposition on a property of a positive definite even-order tensor.
Let E(n) denote the nth order tensor whose elements satisfy

E
(n)
i1···in =

{
1, if i1 = · · · = in,

0, otherwise.
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Then E(1) is the vector whose elements are all 1’s, while E(2) is the unit matrix.

PROPOSITION 1. If a 2n-order tensor A(2n) is positive definite, then there exists
a positive constant α such that A(2n) −αE(2n) is still positive definite. In particular,
this is true for any α satisfying

0 < α < [A(2n)] (10)

if [A(2n)] is defined by 2n-norm in (8).
Proof. By (8), for any x ∈ �r with ‖x‖ = 1,

A(2n)x2n � [A(2n)]‖x‖2n > α‖x‖2n
2n = αE(2n)x2n, (11)

where α is an appropriate positive constant, and it can be any constant satisfying
(10) if [A(2n)] is defined by 2n-norm in (8). Now, for any x ∈ �r , x �= 0, let

x̄ = x

‖x‖ .

Then ‖x̄‖ = 1. By (11), we have(
A(2n) − αE(2n)

)
x2n = ‖x‖2n

(
A(2n)x̄2n − αE(2n)x̄2n

)
> 0.

This shows that A(2n) − αE(2n) is positive definite. �

4. Normal Multivariate Polynomial

Let f be a 2n-degree multivariate polynomial defined by

f (x) =
2n∑

k=0

A(2n−k)x2n−k, (12)

where A(2n−k) is a 2n−k totally symmetric tensor. If A(2n) is positive definite, then
we call f a normal multivariate polynomial.

Let f be a 2n-degree normal multivariate polynomial as defined by (12). Define
a one-variable polynomial φ by

φ(α) := [A(2n)]α2n −
2n−1∑
k=1

‖A(2n−k)‖α2n−k + A(0), (13)

and call φ the characterized polynomial of f .

THEOREM 2. Suppose that f is a 2n-degree normal multivariate polynomial and
φ is its characterized polynomial. Then f is bounded below by φ in the sense that
for all x ∈ �r , we have

f (x) � φ(‖x‖). (14)
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When ‖x‖ → ∞, we have

f (x) → ∞. (15)

These imply that f has a global minimum. Moreover, if x∗ is a global minimum of
f , then it satisfies

‖x∗‖ � L := max

{
1,

∑2n−1
k=1 ‖A(2n−k)‖

[A(2n)]

}
. (16)

Proof. By (6)-(13), we have (14). Since

φ(α) → ∞
as α → ∞, by (14), we have (15) as ‖x‖ → ∞. Since φ is bounded below, f

is also bounded below. These imply that f has a global minimum. When ‖x‖ > L,

f (x) � φ(‖x‖) > A(0) = f (0).

Hence, x cannot be a global minimum of f . This proves (16). �
The number L defined in (16) gives an upper bound of the norm of the global

minimum of f . We may find a lower bound φmin for φ such that for all α,

φ(α) � φmin.

Then, by (14), φmin is a lower bound of f ∗.
In Section 5, we will give a practical way to compute an upper bound of the

norm of the global minimum of f , and a lower bound of f ∗, when f is defined by
(3).

Let

f0(x) = A(2n)x2n,

y(i) = (x1, · · ·, xi−1, xi+1, · · ·, xn)
T

and

fi(y(i)) = f0(x1, · · ·, xi−1, 1, xi+1, · · ·, xr ).

THEOREM 3. Let A(2n) be a 2nth order totally symmetric tensor, y and fi be
defined as above. Then the following statements are true.

(i) A(2n) is positive definite if and only if fi are strictly positive polynomials for
i = 1, · · ·, r. A(2n) is positive semidefinite if and only if fi are nonnegative
polynomials for i = 1, · · ·, r.
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(ii) A(2n)x2n can be written in the form of (9), if for i = 1, · · ·, r, fi can be
represented as a sum of squares of polynomials. A(2n)x2n can be written in the
form of (9) such that B

(1)
1 , · · ·, B(1)

m form a regular family, if for i = 1, · · ·, r, fi

can be represented as a sum of squares of polynomials and a positive constant,
i.e.,

fi(y(i)) =
mi∑
j=1

(
gij (y(i))

)2 + α2
i , (17)

where gij are polynomials of y(i), αi �= 0.
(iii) If r = 2, then A(2n) is positive semidefinite if and only if A(2n)x2n can be

represented by (9), and A(2n) is positive definite if and only if A(2n)x2n can be
represented by (9) such that B

(1)

1 , · · ·, B(1)
m form a regular family.

(iv) If r � 3, then even if A(2n) is positive semidefinite, A(2n)x2n may not be able to
be represented by (9).

Proof.
(i) Suppose that i = 1, · · ·, r. Let

x = (x1, · · ·, xi−1, 1, xi+1, · · ·, xr )
T .

If A(2n) is positive definite, then for any y(i) ∈ �r−1,

fi(y(i)) = f0(x) = A(2n)x2n > 0,

i.e., fi is a strictly positive polynomial.
On the other hand, suppose that fi are strictly positive polynomials for i =
1, · · ·, r. Let x ∈ �r , x �= 0. Then there is an i such that xi �= 0. Let

y(i) =
(

x1

xi

, · · ·, xi−1

xi

,
xi+1

xi

, · · ·, xn

xi

)T

.

Then,

A(2n)x2n = f0(x) = x2n
i fi(y(i)) > 0,

i.e., A(2n) is positive definite.
The statement on positive semidefinite totally symmetric tensors and nonneg-
ative polynomials can be proved similarly.
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(ii) In the second case, we have

A(2n)x2n = f0(x) = 1

r

r∑
i=1

x2n
i fi(y(i))

= 1

r

r∑
i=1

x2n
i


 mi∑

j=1

(
gij (y(i))

)2 + α2
i




= 1

r

r∑
i=1


 mi∑

j=1

(
xn

i gij (y(i))
)2 + (

αix
n
i

)2


 .

The first case can be proved similarly. This proves (ii).
(iii) The “if” part is true for any positive integer r, as stated at the end of the

last section. Therefore, we only need to prove the “only if” part. Suppose
r = 2 and A(2n) is positive definite. By (i), fi for i = 1, · · ·, r are strictly
positive polynomials. Since r = 2, fi are polynomials of one variable. It
is well-known [6, 9] that a one-variable strictly positive polynomial can be
represented in the form (17). By (ii), we get the conclusion. The conclusion
for positive semidefinite totally symmetric tensors can be proved similarly.

(iv) Consider the sixth order totally symmetric tensor A(6) for r = 3, defined by

A(6)x6 = x2
1x

2
2 (x2

1 + x2
2 − x2

3) + x6
3 .

If A(6)x6 can be represented by (9), then

A(6)x6 = x2
1x

2
2 (x2

1 + x2
2 − x2

3) + x6
3 =

m∑
i=1

(
B

(3)
i x3

)2
.

Let x3 = 1. Then

h(x) = x2
1x2

2 (x2
1 + x2

2 − 1) + 1

can be represented by squares of polynomials. But this is impossible [6].
Hence, (iv) holds. �

It is noted that this issue is related with Hilbert’s 17th problem on the represent-
ation of nonnegative polynomials [6, 9].

5. Quartic Polynomial from Signal Processing

We now turn to the quartic polynomial f defined by (3). Firstly, we may assume
that each component of g(x) does not include the constant term, i.e., it has only
linear and quadratic terms. If not, we may write

g(x) =
(

g00

g10 + g1(x)

)
,
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where g00 and g10 are constant vectors and each component of g1 has only linear
and quadratic terms, the dimension of g1 may be lower than m. We may partition c

and G accordingly as

c =
(

c0

c1

)

and

G =
(

G00 G01

G10 G11

)
,

such that the dimensions of c1 and G11 are consistent with the dimension of g1.
Then we have

f (x) = g1(x)T G11g1(x) + (2G10g00 + 2G11g10 + c1)
T g1(x)

by dropping the constant term of f . Here G11 is symmetric and positive definite.
Again, f has the form (3) but the dimension m may be reduced. Hence, we may
assume that each component of g(x) has only linear and quadratic terms.

In this way, we have

f (0) = 0. (18)

Denote g2(x) as the quadratic term part of g(x). Here we allow some compon-
ents of g2 to be zero such that g2 has the same dimension as g. We say that g is
regular if g2(x) �= 0 as long as x �= 0.

THEOREM 4. If g is regular, then f defined by (3) is a normal quartic polyno-
mial. Then f has a global minimum point. Let the quartic term of f be denoted as
A(4)x4. Then there are m r × r symmetric square matrices B1, · · ·, Bm such that
for all x ∈ �r ,

A(4)x4 =
m∑

i=1

(
xT Bix

)2
, (19)

and the family {B1, · · ·, Bm} is regular in the sense that if x �= 0 then at least one
of xT B1x, · · ·, xT Bmx is non-zero.

Proof. We may write f in the tensor form (12). Then we have

f (x) = A(4)x4 + A(3)x3 + A(2)x2 + A(1)x + A(0). (20)

By (3), we see that

A(4)x4 = g2(x)T Gg2(x).

If x �= 0 and g is regular, we have g2(x) �= 0 and

A(4)x4 = g2(x)T Gg2(x) > 0
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as G is positive definite. This shows that f is a normal quartic polynomial. The
last conclusion of the theorem now follows from Theorem 1. Furthermore, by the
properties of positive definite symmetric matrix G, A(4)x4 may be written in the
form of (19), with

xT Bix = √
λi(u

i)T g(x),

for i = 1, · · ·,m, where λi is the ith eigenvalue of G, ui ∈ �m is the corresponding
eigenvector, u1, · · ·, um are orthogonal to each other. Since g is regular, the family
{B1, · · ·, Bm} is also regular. �
Let us consider the 70-tuple example of [11], where r = 2 and the last term of
g(x) is 2x2

1 +x2
2 , (See (C11) of [11]). Clearly, g is regular. By Theorem 2, f is also

normal. Hence, f has a global minimum point.
We now give a computable upper bound of the norm of global minima of f

and a computable lower bound of the value of f . Since g is regular, we see that
‖g(x)‖ → ∞ if ‖x‖ → ∞.

THEOREM 5. For all x,

f (x) � −1

2
cT Gc. (21)

Let λmin be the smallest eigenvalue of G. Let L be a positive number such that if
‖x‖ > L, then

‖g(x)‖ >
‖c‖
λmin

. (22)

If x∗ is a global minimum point of f , then it satisfies

‖x∗‖ � L. (23)

Proof. Define a function of y, say ψ , as

ψ(y) = yT Gy + cT y.

Then

f (x) = ψ(g(x))

and ψ has a global minimum point y0 = − 1
2G

−1c. For any y ∈ �m, we have

ψ(y) � ψ(y0) = −1

2
cT Gc.

Let y = g(x), we have (21). If ‖x‖ > L, by (22), we have

f (x) = ψ(g(x)) � λmin‖g(x)‖2 − ‖c‖ · ‖g(x)‖ > 0 = f (0).
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Hence, x cannot be a global minimum of f . This proves (23). �
The formula (21) gives a computable lower bound of the value of f . In practice,

it is also not difficult to find L satisfying (22). For example, in the 70-tuple example
of [11], since r = 2 and the last term of g(x) is 2x2

1 + x2
2 , it is not difficult to

compute L. Thus, (23) also gives a computable upper bound of the norm of global
minima of f .

We now turn to the constrained problem (2). Clearly, the formula (21) still gives
a computable lower bound of the global minimum value of (2). But (23) may not
be true for (2) since 0 may not be feasible to (2). Assume that x0 is a feasible point
of (2). Shift x − x0 to x. Clear up the constant terms of the components of the
reformed function g. Then (18) is still true and 0 is feasible. Then we can have (22)
as a computable upper bound of the norm of global minima of (2).

The formula (21) gives a computable lower bound of the global minimum value
of (1) as well as (2), while the formula (23) gives a computable upper bound of the
norm of global minima of (1) as well as (2). This makes the task of finding a global
minimum of (1) or (2) much easier [4].

6. Concluding Remarks

In this paper, we discussed the global minimization problem of a multivariate poly-
nomial, in particular, a normal multivariate polynomial. The global minimization
problem of a normal quartic polynomial from signal processing is the motivation
of this paper.

In 1998, Shor in his book [9] studied multivariate polynomial minimization by
relating it to the 17th Hilbert problem. He reduced the multivariate polynomial
minimization problem to a special quadratic equality constrained quadratic minim-
ization problem. By considering the Lagrange function and the dual problem, Shor
[9] established a dual lower bound for f ∗. This dual lower bound can be obtained
by solving the convex dual problem. Shor showed that the dual lower bound is
equal to f ∗ if and only if f (x) − f ∗ can be represented as a sum of squares of
polynomials.

It is interesting to note that Shor’s approach is in the opposite direction of the
approach used in [11], the latter converts a high dimensional quadratic equality
constrained quadratic minimization problem into a low dimensional multivariate
polynomial minimization problem. It may be worth exploring the possibility to
apply Shor’s approach to the problem in [11] directly.

Nesterov [7] discussed the multivariate polynomial minimization problem in
2000.

In 2001, Lasserre [6] further studied this problem. By using the theory of mo-
ments, which is in duality with the theory of nonnegative polynomials and the
17th Hilbert problem, Lasserre reduced this problem to solving an (often finite)
sequence of positive semidefinite programs. He showed that (1) is equivalent to a
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positive semidefinite program if f (x) − f ∗ can be represented as a sum of squares
of polynomials.

Recently, Kojima [5] also studied the multivariate polynomial optimization prob-
lem.

The topic of solving a system of multivariate polynomial equations is a popular
topic in computational mathematics. It has applications in chemical engineering,
power engineering, robot engineering and economics. The topic of multivariate
polynomial interpolation is also a popular topic in approximation theory. It is nat-
ural to expect that multivariate polynomial minimization may take a similar place
in the development of optimization. In fact, multivariate quartic polynomial minim-
ization may be the simplest multivariate nonconvex global optimization problem.
With its abundant theoretic interests revealed in [2, 5, 6, 7, 9] and this paper, it
deserves more attention in optimization. It will be interesting to know if it has
some engineering applications other than the signal processing problem discussed
in this paper.

Several challenging questions remain open.
1. Is the conjecture in Sections 2 true? Prove it or give a counter example.

In particular, can we prove that a quartic two variable polynomial has at most 4
local minima, or can we construct a quartic two variable polynomial having 5 local
minima?

2. When 2-norm is used, ‖A(2)‖ is the largest eigenvalue of A(2). If 2-norm is
used and A(2) is positive definite, [A(2)] is the smallest eigenvalue of A(2). Are there
similar results for ‖A(3)‖, ‖A(4)‖ and [A(4)]?

3. Are there practical ways to compute ‖A(3)‖, ‖A(4)‖ and [A(4)]?
4. When r � 3, for a general even-order tensor A(2n), is the following statement

true? That is, A(2n) is positive definite if and only if there are m nth order tensors
B

(n)

1 , · · ·, B(n)
m such that they form a regular family and (9) holds.

5. We showed that the quartic polynomial f defined by (3) is a normal poly-
nomial. Can we represent any normal quartic polynomial in the form (3)? If the
answer is true, then the formulas (21) and (23) can be applied to a general normal
quartic polynomial. If the answer is negative, under what conditions for which a
normal quartic polynomial is representable in the form (3)?

6. Let f be defined by (3). Under what conditions to be imposed on f (x) − f ∗
such that f is representable as a sum of squares of quadratic polynomials? If so, by
Shor [9] and Lasserre [6], it can be converted into a convex semidefinite program
problem.

7. If we apply Shor’s method and Lasserre’s method to the problem (1) when f

is defined by (3), can we obtain some better results?
8. Let g2(x) be an m-dimensional vector-valued function such that each com-

ponent of g2 is the sum of some quadratic product terms of x1, · · ·, xr . Can we give
an algorithm to judge if g2 is regular, i.e., g2(x) �= 0 as long as x �= 0?

9. If g is regular, can we give an algorithm to calculate L satisfying (22)?
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10. What is the relationship among multivariate polynomial optimization, mul-
tivariate polynomial equations, and multivariate polynomial interpolation?
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